Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(13): 8179-8193, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36967112

RESUMO

Motor disturbances are observed in schizophrenia patients, but the neuroanatomical background is unknown. Our aim was to investigate the pyramidal cells of the primary motor cortex (BA 4) in both hemispheres of postmortem control and schizophrenia subjects-8 subjects in each group-with 2.5-5.5 h postmortem interval. The density and size of the Sternberger monoclonal incorporated antibody 32 (SMI32)-immunostained pyramidal cells in layer 3 and 5 showed no change; however, the proportion of larger pyramidal cells is decreased in layer 5. Giant pyramidal neurons (Betz cells) were investigated distinctively with SMI32- and parvalbumin (PV) immunostainings. In the right hemisphere of schizophrenia subjects, the density of Betz cells was decreased and their PV-immunopositive perisomatic input showed impairment. Part of the Betz cells contained PV in both groups, but the proportion of PV-positive cells has declined with age. The rat model of antipsychotic treatment with haloperidol and olanzapine showed no differences in size and density of SMI32-immunopositive pyramidal cells. Our results suggest that motor impairment of schizophrenia patients may have a morphological basis involving the Betz cells in the right hemisphere. These alterations can have neurodevelopmental and neurodegenerative explanations, but antipsychotic treatment does not explain them.


Assuntos
Lateralidade Funcional , Córtex Motor , Células Piramidais , Esquizofrenia , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Envelhecimento , Antipsicóticos/uso terapêutico , Autopsia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Lateralidade Funcional/efeitos dos fármacos , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Imuno-Histoquímica , Filamentos Intermediários/metabolismo , Córtex Motor/efeitos dos fármacos , Córtex Motor/patologia , Olanzapina/farmacologia , Olanzapina/uso terapêutico , Parvalbuminas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Ratos Sprague-Dawley , Análise de Regressão , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
2.
Sci Rep ; 12(1): 21817, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528685

RESUMO

Ageing is driven by the progressive, lifelong accumulation of cellular damage. Autophagy (cellular self-eating) functions as a major cell clearance mechanism to degrade such damages, and its capacity declines with age. Despite its physiological and medical significance, it remains largely unknown why autophagy becomes incapable of effectively eliminating harmful cellular materials in many cells at advanced ages. Here we show that age-associated defects in autophagic degradation occur at both the early and late stages of the process. Furthermore, in the fruit fly Drosophila melanogaster, the myotubularin-related (MTMR) lipid phosphatase egg-derived tyrosine phosphatase (EDTP) known as an autophagy repressor gradually accumulates in brain neurons during the adult lifespan. The age-related increase in EDTP activity is associated with a growing DNA N6-adenine methylation at EDTP locus. MTMR14, the human counterpart of EDTP, also tends to accumulate with age in brain neurons. Thus, EDTP, and presumably MTMR14, promotes brain ageing by increasingly suppressing autophagy throughout adulthood. We propose that EDTP and MTMR14 phosphatases operate as endogenous pro-ageing factors setting the rate at which neurons age largely independently of environmental factors, and that autophagy is influenced by DNA N6-methyladenine levels in insects.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Humanos , Adulto , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Autofagia/genética , Envelhecimento/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Encéfalo/metabolismo , Lipídeos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Acta Neuropathol ; 144(4): 651-676, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040521

RESUMO

Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Doença de Alzheimer/patologia , Humanos , Imageamento Tridimensional , Locus Cerúleo/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947618

RESUMO

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Assuntos
Neuropeptídeos , Córtex Pré-Frontal , Receptores de Neuropeptídeos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
5.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563137

RESUMO

Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Interneurônios , Malformações do Desenvolvimento Cortical do Grupo I , Parvalbuminas
6.
Epilepsy Res ; 169: 106509, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310654

RESUMO

OBJECTIVE: The goal of this study was to define the pathology and anesthesia dependency of single pulse electrical stimulation (SPES) dependent high-frequency oscillations (HFOs, ripples, fast ripples) in the hippocampal formation. METHODS: Laminar profile of electrically evoked short latency (<100 ms) high-frequency oscillations (80-500 Hz) was examined in the hippocampus of therapy-resistant epileptic patients (6 female, 2 male) in vivo, under general anesthesia. RESULTS: Parahippocampal SPES evoked HFOs in all recorded hippocampal subregions (Cornu Ammonis 2-3, dentate gyrus, and subiculum) were not uniform, rather the combination of ripples, fast ripples, sharp transients, and multiple unit activities. Mild and severe hippocampal sclerosis (HS) differed in the probability to evoke fast ripples: it decreased with the severity of sclerosis in CA2-3 but increased in the subiculum. Modulation in the ripple spectrum was observed only in the subiculum with increased fast HFO rate and frequency in severe HS. Inhalational anesthetics (isoflurane) suppressed the chance to evoke HFOs compared to propofol. CONCLUSION: The presence of early HFOs in the dentate gyrus and early fast HFOs (>250 Hz) in the other subregions indicate the pathological nature of these evoked oscillations. Subiculum was found to be active producing HFOs in parallel with the cell loss in the hippocampus proper, which emphasize the role of this region in the generation of epileptic activity.


Assuntos
Epilepsia , Estimulação Elétrica , Eletroencefalografia , Feminino , Hipocampo , Humanos , Masculino , Propofol , Esclerose
7.
Brain Struct Funct ; 226(1): 281-296, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33355694

RESUMO

Betz cells-the gigantopyramidal neurons found in high amount in the primary motor cortex-are among of the most characteristic neuronal cells. A part of them contains the calcium-binding protein parvalbumin (PV) in primates. However, less is known about these cells in the human motor cortex despite their important role in different neurological disorders. Therefore, the aim of our study was to investigate the neurochemical features and perisomatic input properties of Betz cells in control human samples with short post-mortem interval. We used different microscopic techniques to investigate the primary motor cortex of both hemispheres. The soma size and density, and expression of PV of the Betz cells were investigated. Furthermore, we used confocal fluorescent and electron microscopy to examine their perisomatic input. The soma size and density showed moderate variability among samples and hemispheres. Post-mortem interval and hemispherical localization did not influence these features. Around 70% of Betz cells expressed PV, but in less intensity than the cortical interneurons. Betz neurons receive dense perisomatic input, which are mostly VIAAT- (vesicular inhibitory amino acid transporter) and PV immunopositive. In the electron microscope, we found PV-immunolabelled terminals with asymmetric-like synaptic structure, too. Terminals with morphologically similar synaptic specialisation were also found among vGluT2- (vesicular glutamate transporter type 2) immunostained terminals contacting Betz cells. Our data suggest that Betz cells' morphological properties showed less variability among subjects and hemispheres than the density of them. Their neurochemical and perisomatic input characteristics support their role in execution of fast and precise movements.


Assuntos
Córtex Motor/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Adulto , Idoso , Feminino , Humanos , Interneurônios/metabolismo , Masculino , Pessoa de Meia-Idade , Terminações Pré-Sinápticas/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(12): 6844-6854, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32144141

RESUMO

Chronic inflammation during Alzheimer's disease (AD) is most often attributed to sustained microglial activation in response to amyloid-ß (Aß) plaque deposits and cell death. However, cytokine release and microgliosis are consistently observed in AD transgenic animal models devoid of such pathologies, bringing into question the underlying processes that may be at play during the earliest AD-related immune response. We propose that this plaque-independent inflammatory reaction originates from neurons burdened with increasing levels of soluble and oligomeric Aß, which are known to be the most toxic amyloid species within the brain. Laser microdissected neurons extracted from preplaque amyloid precursor protein (APP) transgenic rats were found to produce a variety of potent immune factors, both at the transcript and protein levels. Neuron-derived cytokines correlated with the extent of microglial activation and mobilization, even in the absence of extracellular plaques and cell death. Importantly, we identified an inflammatory profile unique to Aß-burdened neurons, since neighboring glial cells did not express similar molecules. Moreover, we demonstrate within disease-vulnerable regions of the human brain that a neuron-specific inflammatory response may precede insoluble Aß plaque and tau tangle formation. Thus, we reveal the Aß-burdened neuron as a primary proinflammatory agent, implicating the intraneuronal accumulation of Aß as a significant immunological component in the AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Inflamação/patologia , Neurônios/imunologia , Placa Amiloide/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Amiloidose , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Ratos , Ratos Transgênicos
9.
Science ; 367(6477): 528-537, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31831638

RESUMO

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Junções Intercelulares/imunologia , Microglia/imunologia , Neurônios/imunologia , Receptores Purinérgicos P2Y12/fisiologia , Animais , Encéfalo/ultraestrutura , Lesões Encefálicas/patologia , Cálcio , Comunicação Celular/imunologia , Células HEK293 , Humanos , Camundongos , Mitocôndrias/imunologia , Canais de Potássio Shab/genética , Canais de Potássio Shab/fisiologia , Transdução de Sinais
10.
Acta Neuropathol ; 136(6): 901-917, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362029

RESUMO

Growing evidence gathered from transgenic animal models of Alzheimer's disease (AD) indicates that the intraneuronal accumulation of amyloid-ß (Aß) peptides is an early event in the AD pathogenesis, producing cognitive deficits before the deposition of insoluble plaques. Levels of soluble Aß are also a strong indicator of synaptic deficits and concurrent AD neuropathologies in post-mortem AD brain; however, it remains poorly understood how this soluble amyloid pool builds within the brain in the decades leading up to diagnosis, when a patient is likely most amenable to early therapeutic interventions. Indeed, characterizing early intracellular Aß accumulation in humans has been hampered by the lack of Aß-specific antibodies, variability in the quality of available human brain tissue and the limitations of conventional microscopy. We therefore sought to investigate the development of the intraneuronal Aß pathology using extremely high-quality post-mortem brain material obtained from a cohort of non-demented subjects with short post-mortem intervals and processed by perfusion-fixation. Using well-characterized monoclonal antibodies, we demonstrate that the age-dependent intraneuronal accumulation of soluble Aß is pervasive throughout the entorhinal cortex and hippocampus, and that this phase of the amyloid pathology becomes established within AD-vulnerable regions before the deposition of Aß plaques and the formation of tau neurofibrillary tangles. We also show for the first time in post-mortem human brain that Aß oligomers do in fact accumulate intraneuronally, before the formation of extracellular plaques. Finally, we validated the origin of the Aß-immunopositive pool by resolving Aß- and APP/CTF-immunoreactive sites using super resolution structured illumination microscopy. Together, these findings indicate that the lifelong accrual of intraneuronal Aß may be a potential trigger for downstream AD-related pathogenic events in early disease stages.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Neurópilo/metabolismo , Proteínas tau/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Neurópilo/patologia , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia
11.
Epilepsy Res ; 145: 40-50, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885592

RESUMO

Recent data from absence epileptic patients and animal models provide evidence for significant impairments of attention, memory, and psychosocial functioning. Here, we outline aspects of the electrophysiological and structural background of these dysfunctions by investigating changes in hippocampal and cortical GABAergic inhibitory interneurons in two genetically absence epileptic rat strains: the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Using simultaneously recorded field potentials from the primary somatosensory cortex (S1 cortex, seizure focus) and the hippocampal hilus, we demonstrated that typical frequencies of spike-wave discharges (SWDs; 7-8 Hz, GAERS; 7-9 Hz, WAG/Rij) and their harmonics appeared and their EEG spectral power markedly increased on recordings not only from the S1 cortex, but also from the hilus in both GAERS and WAG/Rij rats during SWDs. Moreover, we observed an increased synchronization between S1 cortex and hilus at 7-8 Hz (GAERS) and 7-9 Hz (WAG/Rij) and at their harmonics when SWDs occurred in the S1 cortex in both rat strains. In addition, using immunohistochemistry we demonstrated changes in the densities of perisomatic (parvalbumin-immunopositive, PV+) and interneuron-selective (calretinin-immunopositive, CR+) GABAergic inhibitory interneuron somata. Specifically, GAERS and WAG/Rij rats displayed lower densities of PV-immunopositivity in the hippocampal hilus compared to non-epileptic control (NEC) and normal Wistar rats. GAERS and WAG/Rij rats also show a marked reduction in the density of CR + interneurons in the same region in comparison with NEC rats. Data from the S1 cortex reveals bidirectional differences in PV + density, with GAERS displaying a significant increase, whereas WAG/Rij a reduction compared to control rat strains. Our results suggest an enhanced synchronization and functional connections between the hippocampus and S1 cortex as well as thalamocortical activities during SWDs and a functional alteration of inhibitory mechanisms in the hippocampus and S1 cortex of two genetic models of absence epilepsy, presumably in relation with increased neuronal activity and seizure-induced neuronal injury.


Assuntos
Córtex Cerebral/patologia , Epilepsia Tipo Ausência/patologia , Hipocampo/patologia , Interneurônios/fisiologia , Animais , Calbindina 2/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Feminino , Interneurônios/ultraestrutura , Masculino , Parvalbuminas/metabolismo , Ratos , Ratos Endogâmicos , Ratos Wistar , Estatísticas não Paramétricas
12.
Brain Struct Funct ; 223(5): 2143-2156, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29380121

RESUMO

Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.


Assuntos
Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Axônios/metabolismo , Axônios/ultraestrutura , Carbocianinas/metabolismo , Corpo Celular/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Ácido Glutâmico/metabolismo , Humanos , Imageamento Tridimensional , Kisspeptinas/ultraestrutura , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Microscopia Confocal , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/ultraestrutura , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
13.
Biomed Res Int ; 2017: 7154295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28116310

RESUMO

GABAergic inhibition and particularly perisomatic inhibition play a crucial role in controlling the firing properties of large principal cell populations. Furthermore, GABAergic network is a key element in the therapy attempting to reduce epileptic activity. Here, we present a review showing the synaptic changes of perisomatic inhibitory neuronal subtypes in the hippocampus of temporal lobe epileptic patients, including parvalbumin- (PV-) containing and cannabinoid Type 1 (CB1) receptor-expressing (and mainly cholecystokinin-positive) perisomatic inhibitory cells, known to control hippocampal synchronies. We have examined the synaptic input of principal cells in the dentate gyrus and Cornu Ammonis region in human control and epileptic hippocampi. Perisomatic inhibitory terminals establishing symmetric synapses were found to be sprouted in the dentate gyrus. Preservation of perisomatic input was found in the Cornu Ammonis 1 and Cornu Ammonis 2 regions, as long as pyramidal cells are present. Higher density of CB1-immunostained terminals was found in the epileptic hippocampus of sclerotic patients, especially in the dentate gyrus. We concluded that both types of (PV- and GABAergic CB1-containing) perisomatic inhibitory cells are mainly preserved or showed sprouting in epileptic samples. The enhanced perisomatic inhibitory signaling may increase principal cell synchronization and contribute to generation of epileptic seizures and interictal spikes.


Assuntos
Dendritos/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Sinapses/metabolismo , Lobo Temporal/fisiopatologia , Autopsia , Axônios/metabolismo , Mapeamento Encefálico , Colecistocinina/metabolismo , Giro Denteado/embriologia , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Neurônios/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais
14.
Sci Rep ; 6: 30615, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477243

RESUMO

The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson's disease.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Mesencéfalo/citologia , Neurônios/metabolismo , Animais , Callithrix , Humanos , Masculino , Mesencéfalo/metabolismo , Parte Compacta da Substância Negra/citologia , Parte Compacta da Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
15.
Brain Struct Funct ; 221(7): 3601-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26427846

RESUMO

Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Simportadores/metabolismo , Adulto , Idoso , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Feminino , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Pilocarpina
17.
Nat Neurosci ; 18(4): 562-568, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706472

RESUMO

Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamic nuclei (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. We found that GABAergic and glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoked fast and reliable inhibition in the IL via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic and glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system that gates forebrain activity through fast and powerful synaptic inhibition of the IL.


Assuntos
Vias Aferentes/fisiologia , Comportamento Animal/fisiologia , Neurônios GABAérgicos/fisiologia , Glicina/metabolismo , Núcleos Intralaminares do Tálamo/fisiologia , Fibras Nervosas/fisiologia , Inibição Neural/fisiologia , Tegmento Pontino/fisiologia , Animais , Masculino , Camundongos , Optogenética , Técnicas de Patch-Clamp , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo
18.
Acta Neuropathol ; 129(4): 541-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676386

RESUMO

Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine ß-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Receptores de Somatostatina/metabolismo , Fatores Etários , Idoso , Peptídeos beta-Amiloides/metabolismo , Animais , Monoaminas Biogênicas/metabolismo , Carbocianinas/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Regulação da Expressão Gênica/genética , Humanos , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Receptores de Somatostatina/genética , Transdução de Sinais/fisiologia , Somatostatina/metabolismo , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas tau/metabolismo
19.
Front Neuroanat ; 8: 100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324731

RESUMO

This review focuses on the vulnerability of a special interneuron type-the calretinin (CR)-containing interneurons-in temporal lobe epilepsy (TLE). CR is a calcium-binding protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of inhibitory cells, innervating other interneurons in rodents and to some extent principal cells in the human. Their dendrites are strongly connected by zona adherentiae and presumably by gap junctions both in rats and humans. CR-containing interneurons are suggested to play a key role in the hippocampal inhibitory network, since they can effectively synchronize dendritic inhibitory interneurons. The sensitivity of CR-expressing interneurons to epilepsy was discussed in several reports, both in animal models and in humans. In the sclerotic hippocampus the density of CR-immunopositive cells is decreased significantly. In the non-sclerotic hippocampus, the CR-containing interneurons are preserved, but their dendritic tree is varicose, segmented, and zona-adherentia-type contacts can be less frequently observed among dendrites. Therefore, the dendritic inhibition of pyramidal cells may be less effective in TLE. This can be partially explained by the impairment of the CR-containing interneuron ensemble in the epileptic hippocampus, which may result in an asynchronous and thus less effective dendritic inhibition of the principal cells. This phenomenon, together with the sprouting of excitatory pathway axons and enhanced innervation of principal cells, may be involved in seizure generation. Preventing the loss of CR-positive cells and preserving the integrity of CR-positive dendrite gap junctions may have antiepileptic effects, maintaining proper inhibitory function and helping to protect principal cells in epilepsy.

20.
PLoS One ; 6(11): e27196, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22076136

RESUMO

The endocannabinoid system plays a central role in retrograde synaptic communication and may control the spread of activity in an epileptic network. Using the pilocarpine model of temporal lobe epilepsy we examined the expression pattern of the Type 1 cannabinoid receptor (CB1-R) in the hippocampi of CD1 mice at survival times of 2 hours, 1 day, 3 days and 2 months (acute, latent and chronic phases). Based on the behavioral signs of the acute seizures, animals were classified as "weakly" or "strongly" epileptic using the modified Racine scale. Mice of the weak group had mild seizures, whereas seizures in the strong group were frequent with intense motor symptoms and the majority of these animals developed sclerosis in the chronic phase. In control samples the most intense staining of CB1-R-positive fibers was found in the molecular layer of the dentate gyrus and in str. pyramidale of the cornu Ammonis. In weak animals no significant changes were seen at any survival time compared to controls. In strong animals, however, in the acute phase, a massive reduction in CB1-R-stained terminals occurred in the hippocampus. In the latent phase CB1-R immunoreactivity gradually recovered. In the chronic phase, CB1-immunostaining in sclerotic samples was stronger throughout the hippocampus. Quantitative electron microscopic analysis showed an increase in the number of CB1-R-positive terminals in the dentate gyrus. Moreover, the number of immunogold particles significantly increased in GABAergic terminals. Our results suggest a proconvulsive downregulation of CB1 receptors in the acute phase most probably due to receptor internalization, followed by compensatory upregulation and sprouting in the chronic phase of epilepsy. In conclusion, the changes in CB1 receptor expression pattern revealed in this study are associated with the severity of hippocampal injury initiated by acute seizures that ultimately leads to sclerosis in the vulnerable regions in the chronic phase.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Agonistas Muscarínicos/toxicidade , Neurônios/metabolismo , Pilocarpina/toxicidade , Receptor CB1 de Canabinoide/fisiologia , Doença Aguda , Animais , Doença Crônica , Eletrofisiologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/mortalidade , Hipocampo/citologia , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...